

Workshop on In Vehicle Network using CAN By

Modern CAR

Modern CAR

University of Skills

INTRODUCTION

- 1. Controller Area Network (CAN) was initially created by German automotive system supplier Robert Bosch in the mid-1980s.
- 2. The controller area network (CAN) is a serial communication protocol for connecting electronic control modules in automotive and industrial applications.
- 3. It is internationally standardized by the International Standardization Organization (ISO) and Society of Automotive Engineers (SAE).

- 5. CAN chips were created by major semiconductor manufacturers such as Intel, Motorola, and Philips.
- 6. There are two possible bus states called "dominant" and "recessive".

Example of a CAN system

In Vehicle Network

APPLICATIONS of CAN

- **➤** Automotive (modern Vehicles)
- ➤ Industrial Machinery (Packaging Machines, Sewing, Folding, Packaging machine, Industrial Freezers machine, Printing machines)
- ➤ Building Automation (Elevators)
- ➤ Medical (The Process Optimized Operating Room)
- ➤ Maritime (Maritime Research Institute)
- ➤ Restaurant Appliances (Coffee Machine)
- ➤ Laboratory Equipment & Research
- **>** Avionics

Few Terminologies

- Transmitter
- Receiver
- Master
- Slave
- Multi-master
- Arbitration
- Synchronization

Versions of CAN

CAN 2.0A Has an 11 bit identifier

CAN 2.0B (active) Has an 11 bit identifier

(Standard Format).

CAN 2.0B (passive) Has an 29 bit identifier (Extended Format).

CAN SPECIFICATION

Specified by BOSCH GmbH and normalized by ISO 11898

Specified by users 7. Application layer (OSEK/VDX, J1939, CANOpen, DeviceNet, etc.) 6. (empty) 3. LLC (Logic Link Control) Accept. filtering, Overload notif., etc. Data link layer Bosch MAC (Medium Access Control) OSI model Data encap/decap, Frames, Access, etc. specification PLS (Physical Signalling) ISO 11898 Bit encod/decod, Bit timing, Sync. standard PMA (Physical Medium Attachment) 1. Physical layer Driver/ receiver characteristics MDI (Medium Dependent Interface) Connectors

Types of CAN Frames

- Data frame
- Remote frame
- Error frame
- Overload frame
- Interframe space

Message Frames

Data Frame – Broadcasts a message to the CAN bus

Remote Frame – Requests transmission of message

Error Frame – Signals error condition

Overload Frame – Special Error Frame

6/10/2015

-	AME			-		
(1d) Start Of Frame	Arbitration Field (12)	Control Field (6)	Data Field (0-8 bytes)	CRC Field (16)	ACK Field (2)	End Of Frame (7r)

Identifier (11 bits)	RTR Bits(1)		
Identifier (11 bits)	SRR Bit(1)	Identifier (18 bits)	IDE Bit (1)

University of Skills

d →'dominant'

r →'recessive'

No.of data bytes	DLC3	DLC2	DLC1	DLC0
0	d	d	d	d
1	d	d	d	r
2	d	d	r	d
3	d	d	r	r
4	d	r	d	d
5	d	r	d	r
6	d	r	r	d
7	d	r	r	r
8	r	d	d	d

CAN Data Frame – Example

Start Of Frame (1)	Arbitration Field (12)	Control Field (6)	Data Field (0-8 bytes)	CRC Field (16)	ACK Field (2)	End Of Frame (7)
` ,		(0)	Dytes <i>)</i>	(10)		

REMOTE Frame

SOF	Identifier	RTR	IDE	r0	DLC	CRC	ACK	EOF+IFS
1 Bit	11 Bit	1 Bit	1 Bit	1 Bit	4 Bit	16 Bit	2 Bit	10 Bit

(C) MicroControl

REMOTE Frame

•	- REMOT	E FRAME		-
Start of Frame (1)	Arbitration	Control	ACK	End OF
	Field	Field	Field	Frame
	(12)	(16)	(2)	(7)

ERROR Frame

ERROR FRAME

Error Flag
(6d/r)

Super position of
Over Load Flags

Error Delimiter
(8r)

ERROR Frame

OVERLOAD Frame

	OVER LOAD FRAME	
Over Load	Super position of	Over Load
Flag (6d)	Over Load Flags	Delimiter (8r)

OVERLOAD Frame

INTER-FRAME SPACE

INTERFRAME SPACE					
Intermission(3)	Suspend Transmission(8)	Bus Idle ()			

INTER-FRAME SPACE

Application Layer

Object Layer

- Message Filtering
- Message and Status Handling

Transfer Layer

- Fault Confinement
- Error Detection and Signalling
- Message Validation
- Acknowledgment
- Arbitration
- Message Framing
- Transfer Rate and Timing

Physical Layer

- Signal Level and Bit Representation
- Transmission Medium

History of CAN

- 1983 : Start of the Bosch internal project to develop an in-vehicle network
- 1986 : Official introduction of CAN protocol
- 1987: First CAN controller chips from Intel and Philips Semiconductors
- 1991: Bosch's CAN specification 2.0 published
- 1991 :CAN Kingdom CAN-based higher-layer protocol introduced by Kvaser
- 1992 : CAN in Automation (CiA) international users and manufacturers group established
- 1992 : CAN Application Layer (CAL) protocol published by CiA
- 1992: First cars from Mercedes-Benz used CAN network
- 1993: ISO 11898 standard published

University of Skills

- 1994: 1st international CAN Conference (iCC) organized by CiA
- 1994: DeviceNet protocol introduction by Allen-Bradley
- 1995: ISO 11898 amendment (extended frame format) published
- 1995 : CANopen protocol published by CiA
- 2000 : Development of the time-triggered communication protocol for CAN (TTCAN)

CAN Output Section

CAN Bus Lines

University of Skills

Arbitration

Error Handling

- 1) CRC ERROR
- 2) STUFFING ERROR
- 3) ACK ERROR
- 4) BIT ERROR
- 5) FORM ERROR

Classification of CAN Protocols

Class ^{*4}	Communication speed	Purpose of use	Appli	ication range
			CAN	Other protocols
Class A	Up to 10 kbps (body system)	Lamp and light Power window Door lock Power sheet Keyless entry, etc.	Low-speed	●Each carmaker's original protocol ●LIN
Class B	10 kbps to 125 kbps (status information system)	Electronic meter Drive information Auto air-conditioner Failure diagnosis, etc.		●J1850 ●VAN
Class C	125 kbps to 1 Mbps (realtime control system)	Engine control Transmission control Brake control Suspension control, etc.	▼ High-speed	●Safe-by-Wire
Class D	5 Mbps and over (multimedia)	Car navi, Audio by-Wire, etc.		

CAN Standard Specifications

Standard	Common Name	Baud Rate	Max nodes	Max Length
ISO 11783	ISOBUS	250 KBit/s	30	40m
ISO 11898-2	High speed- CAN	max. 1 MBit/s	110	6500 m
ISO 11898-3	Fault Tolerant CAN	max. 125 KBit/s	32	500 m
ISO 11992	Truck/Trailer CAN	max. 125 KBit/s	2 (Point to Point)	40 m
ISO 15765	Diagnostics On CAN	max 1 MBit/s	110	
SAE J1939		250 KBit/s	30	40m
SAE J2284		max. 1 MBit/s	110	
SAE J2411	Single Wire CAN	33,3 KBit/s 83,3KBit/s in HSMode	32	

CAN Standard Specifications

Name	Baud rate	Specification	Application field
SAE J1939-11	250 k	Two-wire shielded twisted pair	Truck, bus
SAE J1939-12	250 k	Two-wire shielded twisted pair 12 V supply	Agricultural machine
SAE J2284	500 k	Two-wire twisted pair (non-shielded)	Automobile (high-speed: power train system)
SAE J2411	33.3 k, 83.3 k	One-wire	Automobile (low-speed: body system)
NMEA-2000*2	62.5 k, 125 k, 250 k, 500 k, 1 M	Two-wire shielded twisted pair Power supply	Ship
DeviceNet	125 k, 250 k, 500 k	Two-wire shielded twisted pair 24 V supply	Industrial equipment
CANopen	10 k, 20 k, 25 k, 50 k, 125 k 250 k, 500 k, 800 k, 1 M	Two-wire twisted pair Optional (shielded, power supply)	Industrial equipment
SDS*3	125 k, 250 k, 500 k, 1 M	Two-wire shielded twisted pair Optional (power supply)	Industrial equipment

CAN Hardware Implementation

ISO11898 and ISO11519-2 Compliant Driver ICs

Transceiver IC	ISO11898	ISO11519-2	
	HA13721RPJE(RENESAS)		
	TJA1050T(Philips)	TJA1054T(Philips)	
	TLE6250G(Infineon)	TLE6254-3G(Infineon)	
	CF150C(BOSCH)		

- 1992: CiA 201 series (CAN Application Layer)
- 1994: <u>IEC 62026-3 (DeviceNet)</u>
- 1994: <u>SAE J1939 series</u>
- 1994: <u>EN 50325-4 (CANopen)</u>
- 1999: ISO 11992 series
- 2000: <u>IEC 61162-3 (NMEA 2000)</u>
- 2002: <u>ISO 11783 series (Isobus)</u>
- 2004: <u>ISO 15765 series (OBDII/ISO-TP)</u>
- 2007: <u>Arinc 825/826</u>

CAN Development Tools

- CANALYSER
- CAN OE
- LAB VIEW

Designing CAN Messaging System

A Thorough planning of the system on Messaging Architecture

- 1. List of messages that a node need to transmit
- 2. Events for Message Generation & Transmit
- 3. List of Messages to be accepted
- 4. How to Act-upon a message.

Q/A

Now A Practical Demonstration of CAN Messaging System will follow...

THANK YOU

Promotion

ISM UNIV

- Has experience of 24 years
- Specialized in Embedded System
- Provides Authentic Training with Experienced Faculty Team
- Have Placed 15000+ Engineers in core domain
- Rated one of the best Embedded Training Institute in India

- Embedded System Development
- IoT System Development
- Cloud Computing
- Python Programming
- C,C++ Programming
- Android App Development
- Linux Kernel Programming
- Java Programming

- Faculty Development Program
- Internship Program for Students providing hands-on client Projects & Relevant Training
- Workshops for students
- Seminars on Current Topics
- Soft-skill Training
- Campus Recruitment Assist program

